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Functional annotation and Bayesian fine-mapping
reveals candidate genes for important agronomic
traits in Holstein bulls

Jicai Jiang!, John B. Cole® 2, Ellen Freebern!, Yang Da3, Paul M. VanRaden? & Li Ma® '

A hundred years of data collection in dairy cattle can facilitate powerful studies of complex
traits. Cattle GWAS have identified many associated genomic regions. With increasing
numbers of cattle sequenced, fine-mapping of causal variants is becoming possible. Here we
imputed selected sequence variants to 27,214 Holstein bulls that have highly reliable phe-
notypes for 35 production, reproduction, and body conformation traits. We performed single-
marker scans for the 35 traits and multi-trait tests of the three trait groups, revealing 282
candidate QTL for fine-mapping. We developed a Bayesian Fine-MAPping approach
(BFMAP) to integrate fine-mapping with functional enrichment analysis. Our fine-mapping
identified 69 promising candidate genes, including ABCC9, VPS13B, MGST]1, SCD, MKL1, CSN1S1
for production, CHEK2, GC, KALRN for reproduction, and TMTC2, ARRDC3, ZNF613, CCND2,
FGF6 for conformation traits. Collectively, these results demonstrated the utility of BFMAP,
identified candidate genes, and enhanced our understanding of the genetic basis of cattle
complex traits.
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cattle to facilitate selective breeding for more than one

hundred years. The phenotype of a bull can be highly
accurately calculated from thousands of phenotypic records of his
daughters and other relatives!. A comprehensive spectrum of
phenotypes has been recorded in dairy cattle, including produc-
tion, reproduction, health, and body type traits2. GWAS on these
traits simultaneously in the same population can provide a better
understanding of the effects of underlying QTLs. Because of the
intensive use of artificial insemination and strong selection in
dairy bulls, there are a much smaller number of males than
females in the cattle population?, and chromosome segments can
be quickly traced back to an ancestral bull. The high relatedness
in the cattle population can facilitate accurate imputation?,
especially with the availability of many important ancestor bulls
sequenced by the 1000 Bull Genomes project>S. These unique
features of the cattle population make a large-scale GWAS with
imputed sequence variants possible and valuable.

Fine-mapping of complex traits to single-variant resolution has
started in human studies, e.g., ref. 10, Because of the high levels
of linkage disequilibrium (LD) in the livestock population!!, fine-
mapping of GWAS signals is still difficult in cattle. Additionally,
existing fine-mapping methods are not easily applicable to large-
scale cattle GWAS and fine-mapping studies. Some methods, e.g.,
CAVIARBF!? and PAINTOR!3, generally use a logistic model
with a binary response and categorical functional annotations as
covariates. Such a logistic model is then incorporated into a
model search scheme that often limits the maximum number of
causal variants (e.g., 3) and is computationally impractical for a
locus containing thousands of sequence variants. When multiple
functional data sets are to be tested, model-searching needs to be
conducted separately for each set of functional annotation data,
further increasing the computational burden. In cattle, Bayes and
BayesRC methods have been applied to incorporate sequence data
into genomic selection models, but the large amount of compu-
tation from MCMC prohibits their direct application to large-
scale fine-mapping studies!®1>. Although GCTA-COJO is cap-
able of fast conditional analysis for fine-mapping in cattle!®, the
use of summary statistics and LD data from a reference popula-
tion can be suboptimal when direct genotype and phenotype data
are available. To address these problems, we develop a fast
Bayesian Fine-MAPping method (BFMAP) that can efficiently
integrate functional annotations with fine-mapping. Specifically,
BFMAP can re-use initial model search results for various func-
tional annotations and can be employed for both fine-mapping
and functional enrichment analyses. More importantly, the
functional enrichment estimated from BFMAP is, by definition,
the enrichment of causal effects, in contrast to the enrichment of
heritability by the well-known stratified LD score regression!”.

In our study, the large number of bulls with highly reliable
phenotype and imputed sequence variants can facilitate pow-
erful GWAS and fine-mapping of major GWAS signals.
Although the high LD in the cattle genome makes fine-mapping
and functional enrichment studies difficult, the large sample
size and improved methods can help identify candidate genes of
complex traits as well as biologically informative enrichment of
candidate variants in functional annotation data. Specifically,
we seek to use BFMAP to identify and incorporate functional
annotation into the fine-mapping of 35 production, reproduc-
tion, and conformation traits in dairy cattle. The fine-mapped
genes and variants can provide candidates readily testable in
functional studies. The functional data enriched with variants
associated with complex dairy traits will be useful for future
cattle GWAS and genomic prediction studies. Additionally, the
initial model search results can be reused for estimating
enrichment of causal effects of dairy traits for additional

Phenotypic records have been routinely collected in dairy

functional annotations that are being generated by the FAANG
and related projects in cattle!8,

Results

Data description. We imputed over 3 million selected sequence
variants to 27,214 Holstein bulls after quality control edits, using
the 1000 Bull Genomes data as reference. These bulls were
selected to have highly reliable breeding values (predicted trans-
mitting abilities; PTA) for 35 production, reproduction, and body
conformation traits, with an average reliability of 0.71 across
traits (Table 1). The number of bulls available for individual traits
ranged from 11,713 to 27,161, with >20,000 animals having data
for 32 traits (Table 1). The 27,214 bulls had over 31.6 million
daughters with records for milk production, and the counts were
lower for other traits. This large, high-quality bull data set enables
our following GWAS and fine-mapping studies with great power
and precision.

Single-trait GWAS. We used a mixed-model approach imple-
mented in the software MMAP!? that can incorporate reliability
variation across individual bulls. The mixed-model used in our
GWAS was robust against population structure and familial
relatedness. As shown in Supplemental Data 1, 27 of the 35 traits
had a genomic control factor between 0.95 and 1.05.

Using a genome-wide significance level of P < 5E—8, we found
many clear association signals for the 35 dairy traits (Supple-
mentary Fig. 1). In total, there were 286 unique QTL regions
associated with the 35 traits, and the number of associations for
individual traits ranged from <3 for leg and foot traits to 23 for
protein percentage (Supplemental Data 1 and 2). As compared to
the Cattle QTLdb release 3520, we found that 123 associations
(43%) had been previously reported while 163 associations (57%)
were newly discovered in this study. We identified 15 new
association signals (out of 68) even for the five production traits
that had been extensively studied previously, and 92 new
associations (out of 125) for type traits that drew less attention
in previous studies (Fig. 1 and Supplemental Data 2). While a
proportion of these newly discovered QTLs were identified to be
associated with new traits, these results demonstrated the superior
power of our GWAS in dairy cattle.

Multi-trait association analysis. Consistent with trait definition,
hierarchical clustering of the 35 traits based on the absolute
correlation coefficients identified three trait clusters: production,
reproduction, and body type (Fig. 2). Interestingly, rump angle,
teat length, and dairy form were clustered into reproduction
traits, although they are type traits by definition, indicating a close
genetic correlation between these three traits and cattle repro-
duction. Even after removing the potential distortion from net
merit, rump angle, and teat length were still clustered in the
reproduction group while dairy form was clustered in production
traits (Supplementary Fig. 2).

From multi-trait association analyses of the three trait clusters,
we identified 33, 21, and 39 associations for production,
reproduction, and type traits using P < 5E—8, respectively (Fig. 3
and Supplemental Data 3). While multi-trait analysis is generally
more powerful than single-trait GWAS for pleiotropic QTLs2!:22,
we found fewer associations from the multi-trait analyses than in
single-trait results (76 vs 286 unique QTLs). This is likely due to
the proportion of QTLs with pleiotropic effects on related traits is
less than expected, and/or the limited benefit of including
additional traits in cattle studies where individual traits are
already highly accurate (Table 1). Although the majority of the
multi-trait associations were already identified from single-trait
GWAS, we found ten associations that were missed by single-trait
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Table 1 Number of Holstein bulls, mean and standard deviation (SD) of PTAs, and reliabilities for 35 dairy traits

Trait Name Abbreviation N of Bulls
Milk yield Milk 27,156
Fat yield Fat 27,156
Protein yield Protein 27,156
Fat percentage Fat_Percent 27,156
Protein percentage Pro_Percent 27,156
Net merit Net_Merit 27,161
Productive life Prod_Life 26,727
Somatic cell score SCS 27,143
Age at first calving AFC 16,314
Days to first breeding? DFB 1,713
Daughter pregnancy rate Dtr_Preg_Rate 25,699
Heifer conception rate Heifer_Conc_Rate 19,334
Cow conception rate Cow_Conc_Rate 20,380
Sire calving ease Sire_Calv_Ease 26,345
Daughter calving ease Dtr_Calv_Ease 23,263
Sire stillbirth Sire_Still_Birth 21,543
Daughter stillbirth Dtr_Still_Birth 20,424
Final score Final_score 25,638
Stature Stature 25,641
Strength Strength 25,633
Dairy form Dairy_form 25,615
Foot angle Foot_angle 25,626
Rear legs (side view) Rear_legs(side) 25,641
Body depth Body_depth 25,636
Rump angle Rump_angle 25,641
Rump width Rump_width 25,641
Fore udder attachment Fore_udder_att 25,640
Rear udder height Rear_ud_height 25,640
Udder depth Udder_depth 25,631
Udder cleft Udder_cleft 25,641
Front teat placement Front_teat_pla 25,641
Teat length Teat_length 25,631
Rear legs (rear view) Rear_legs(rear) 24,763
Feet and legs composite Feet_and_legs 25,608
Rear teat placement Rear_teat_pla 25,492

Deregressed PTA Reliability

Mean SD Mean SD
—245.86 850.58 0.860 0.082
—-5.92 30.52 0.860 0.082
—5.31 23.84 0.863 0.083
0.0136 0.107 0.860 0.082
0.0086 0.0464 0.863 0.083
—106.91 278.63 0.763 0.110
-1.367 3.461 0.682 0.145
3.027 0.235 0.786 0.110
—0.446 11.855 0.439 0.258
0.534 2.825 NA NA
—0.593 3.025 0.618 0.185
—0.660 9.610 0.377 0.210
—1.053 6.879 0.597 0.202
7.959 2.461 0.671 0.224
9.141 3.182 0.594 0.176
8.190 1.831 0.495 0.249
8.085 2.958 0.508 0.222
-0.817 1.484 0.702 0.140
—0.482 1.532 0.844 0.079
—0.278 1.513 0.743 0.147
—0.492 1.745 0.752 0.132
—-0.742 2.263 0.664 0.198
—0.009 1.734 0.754 0.137
—-0.413 1.622 0.720 0.180
0.038 1.482 0.828 0.089
—0.504 1.543 0.766 014
—0.908 1.852 0.781 0112
—0.885 2.095 0.737 0.136
—0.653 1.665 0.836 0.082
—-0.720 1.980 0.718 0.156
—0.562 1.663 0.781 0.106
0.104 1.482 0.815 0.087
—0.759 2.709 0.605 0.178
—0.928 2.501 0.600 0.208
—-0.436 1.900 0.762 0.103

aFor DFB, we used PTA as reliability was unavailable

analyses (Supplemental Data 4). Interestingly, we noticed that the
top variant in multi-trait analysis could be >1 Mb away from the
top variants in single-trait GWAS (Supplementary Fig. 3), so the
multi-trait results were combined with single-trait analyses to
refine candidate QTL regions for fine-mapping.

Fine-mapping. To facilitate fast fine-mapping analyses, we
developed a fast Bayesian Fine-MAPping method (BFMAP) that
calculates a posterior probability of causality (PPC) for variants in
candidate regions. We picked QTL regions for fine-mapping from
both single- and multi-trait GWAS results. Initially, we fine-
mapped 434 association signals for 282 QTLs using a significance
threshold of 5E—7 (Supplemental Data 5). The observed number
of fine-mapped signals in a QTL is approximately exponentially
distributed, consistent with our expectation of more causal
mutations with a lower probability in a QTL region (Fig. 4). After
further quality control edits, we finally fine-mapped 308 asso-
ciation signals for 32 traits (Supplemental Data 6). Specifically,
there were more than 20 independent association signals identi-
fied on chromosomes 5, 6, 14, 18, and 29, while very few were
identified on chromosomes 12, 22, and 27.

We investigated the impacts of incorporation of SnpEff-
inferred effect impact (commonly used functional annotation) on
fine-mapping performance. First, incorporating variant impacts
resulted in a substantial change of PPC for variants in the 308
fine-mapped association signals. Variants with moderate impact

had a considerable increase in PPC when functional information
was included in the calculation, while modifier variants generally
had a decreased PPC (Fig. 5a). Second, fine-mapping by
incorporating variant impacts generated significantly smaller
95% credible variant sets than that using an equal prior for all
variants (P = 0.01, Wilcoxon signed-rank test; Fig. 5b). These two
features make the incorporation of functional annotation favored
in our fine-mapping analyses.

Enrichment analysis. To verify the quality of our fine-mapped
variants and characterize their distribution on the cattle genome,
we investigated the enrichment of fine-mapped variants with
different functional annotation data available to cattle, including
location in protein-coding gene, effect predicted by SnpEff?3, and
evolutionary constrain predicted by GERP24 Our enrichment
analysis estimated the probability of a causal variant being in a
functional category and the probability of a non-causal variant
being in the category. The ratio of the two probabilities was used
to measure the enrichment of causal variants for this functional
category?>, with a value larger than one indicating higher
enrichment than the genome background. This enrichment
analysis has also been implemented in BEFMAP.

We first categorized variants into five groups based on their
locations regarding protein-coding genes, i.e., CDS, 5" UTR+2 kb
upstream, intron, 3 UTR+2kb downstream, and other (inter-
genic or non-protein-coding genic regions). Despite the strong
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Fig. 1 Number of association signals newly discovered in our single-trait GWAS versus previously reported. There are in total 30 traits listed. Three leg
traits were excluded since we found no associations passing genome-wide significance. DFB and final score were not listed because there were no matched

traits in the Cattle QTLdb release 35

LD levels in the cattle genome2%, we observed distinctive
enrichment patterns across these five categories (Fig. 6a). Using
bootstrapping, we calculated 95% confidence intervals for the
enrichment levels, showing significant enrichment of fine-
mapped variants in CDS (4.52x) and 5" UTR (2.39x), but not
in intron (0.93x) or 3" UTR (0.77x). We also analyzed a group of
non-protein-coding genes but found significant depletion with
1/52:3.2E—04 (Supplemental Data 7), suggesting a lacking of
functional impacts in these genes on dairy cattle traits.

We further investigated the enrichment of fine-mapped
variants regarding their genomic locations and protein-coding
effects (High, Moderate, Low or Modifier) predicted by SnpEff?>.
When modeling these four categories, we found severe depletion
of variants with high impact (EEZZ.SIE—OS; Supplemental
Data 8). This is strikingly different from a previous study on
human complex traits and diseases that reported an enrichment
of >100 for this category?>. As shown in Fig. 5b, we observed a

significant enrichment in moderate-impact variants (]/EE =87 P
=0.01). Low-impact variants also showed an enrichment (2.0x),
though it was not statistically significant (Fig. 6b). As expected, a
minor depletion was seen in modifier variants (0.87x).

We also used constrained elements on the cattle genome to
categorize variants into two groups (inside of or outside of
constrained elements), as highly conserved DNA sequences may
imply functional importance. As shown in Fig. 6c and

Supplemental Data 9, fine-mapped variants were significantly
enriched in constrained elements (3.72x; P = 0.02). When further
categorizing variants into six groups based on both constrained
elements and variant impacts (Moderate, Low or Modifier), we
found the highest enrichment in moderate-impact variants inside
constrained elements (25.56x; P =0.005). For the other cate-
gories, we observed no enrichment of fine-mapped variants
(Fig. 6d and Supplemental Data 10).

When comparing different trait groups, we observed little
difference in the pattern of enrichment regarding SnpEff-inferred
effect impact (Fig. 7 and Supplemental Data 11). Moderate-
impact variants had a clearly higher enrichment of being causal
for production traits than for reproduction and type traits. We
further used permutation to generate the null distribution of
Ec(Production)/Ec(Reproduction+Type) and showed that the
difference was statistically significant (P =0.01; Supplementary
Fig. 4A). However, the enrichment for low-impact variants was
similar between the three trait groups (Supplementary Fig. 4B).

Candidate genes. Based on the PPCs of variants after incor-
poration of SnpEff impact, we calculated PPC for each gene in
each independent association signal. In total, there were 564
gene-trait association pairs with PPC >0.01 (Supplemental
Data 12). Most of the genes had either a large (>0.95) or small
PPC (<0.05) (Supplementary Fig. 5). We further obtained a short
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Fig. 3 Manhattan plots for multi-trait association analyses. a Production traits. b Reproduction traits, excluding four calving traits (calving ease and stillbirth
traits). € Type traits. d All 29 dairy traits, excluding DFB, net merit, and four calving traits

list of the most promising candidates by applying conservative
criteria: PPC >0.9 if a gene is associated with only one trait and
PPC >0.5 for all traits if a gene affects multiple traits.

This short list had 69 unique genes including both previously
reported genes and newly discovered ones for cattle traits
(Table 2). For example, ABCG2 and DGAT]I are known to affect
milk production in dairy cattle?”28. The ARRDC3 gene has been

associated with body confirmation traits and calving traits in beef
and dairy cattle?!2930, Qur fine-mapping study also revealed
novel gene/association combinations for dairy traits. A previous
study reported that the ABCC9 gene was associated with fat yield,
protein yield, and calving to first service interval in Holstein
cattle3!. In our study, we found a pleiotropic effect of this gene on
body type traits (fore udder attachment and udder depth), milk
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production (milk and protein yields), and daughter pregnancy
rate, with a PPC of almost 1 for all the associated traits. In
addition, we found that there were no common variants among
the credible variant sets for these traits (Table 2), suggesting that
ABCC9 might have different causal mutations for the associated
traits. TMTC2 has been associated with teat length3%, and our
fine-mapping showed that it had an effect on six type traits
(including teat length, fore udder attachment, front teat
placement, rear teat placement, rear udder height, and final
score), with PPC being >0.95 for all those traits. Abo-Ismail et al.
reported CCND2 was associated with stature®?. Our fine-mapping
results determined its association with four type traits (PPC>
0.95 for body depth, rump width, and stature). It is worth noting
that our fine-mapping study not only discovered association of a

Distribution of number of fine-mapped signals in a QTL
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gene with a trait, but also provided the posterior probability of
being causal for a gene.

Candidate variants. Because our stringent quality control filter-
ing during and after imputation removed many variants (~20%,
mostly intergenic with some genic), fine-mapping of the QTL
regions to single-variant resolution could not always be achieved.
Nevertheless, we obtained 95% credible variant set for each
independent signal and merged them into one table. This resulted
in a total of 1582 unique variants (Supplemental Data 13). We
generated a short list of those variants with a moderate impact on
protein coding and PPC >0.2 (Table 3). Among the list, some
variants have been previously reported, e.g., Chr6:38027010 in
ABCG2% and Chr26:21144708 in SCD*2. We also found other
promising candidate variants, e.g., Chr7:93244933 in ARRDC3
with an average PPC of 0.608 on 9 traits, Chr8:83581466 in PTH1
with an average PPC of 0.68 on two type traits (body depth and
strength), Chr1:69673871 in KALRN with an average PPC of 0.46
on two reproduction traits (cow conception rate and daughter
pregnancy rate), Chr17:70276788 in CHEK2 with an average PPC
of 0.39 on two calving traits (sire calving ease and daughter cal-
ving ease).

Discussion
In this study, we performed GWAS for 35 production, repro-
duction, and type traits in dairy cattle with a uniquely large data
set, and then fine-mapped the GWAS signals to single-gene
resolution. With the fast computing method that we developed
(BFMAP), we attempted to find causal effects in hundreds of loci
each of which contained thousands of variants. We also investi-
gated the functional enrichment patterns of several functional
annotation data available in the cattle genome, and incorporated
useful functional information into the final fine-mapping. In sum,
we provided not only a credible candidate gene list for follow-up
functional validation, but also a unique resource that can be easily
employed by future functional enrichment studies.

In the single-trait GWAS, we found many association signals
that have not been discovered (Fig. 1), clearly demonstrating the
benefits of using large dairy cattle data for GWAS of complex

T

Size of 95% credible variant set

100
—— Decreasing
— Increasing

80

60

40 -

20

Size of 95% credible variant set for an association signal

T
An equal prior for each variant Incorporating variant impact

Fig. 5 Effect of incorporation of SnpEff-inferred impact on fine-mapping performance. a PPC with incorporation of SnpEff impacts versus PPC with an equal
prior for each variant. b Size of 95% credible variant set generally decreased after incorporation of SnpEff-inferred impact
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Fig. 7 Enrichment estimates for SnpEff predicted impact by three groups of traits

traits. Reliabilities of deregressed PT As were modeled for most of
the traits. For the traits with small variation of reliability, we
observed similar results for the models with and without relia-
bility; e.g., QTLs found when not modeling reliability were largely

the same as those by incorporating reliability for fat percentage
and daughter pregnancy rate (Supplementary Fig. 6). Interest-
ingly, we observed some deflations in the GWAS of production
traits, which could be due to the large QTL effects on these traits
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Table 2 Candidate genes with high posterior probability of causality
Gene Traits Gene PPC Minimal p-values
ABCG2 Fat|Fat_Percent|Milk|Net_Merit|Pro_Percent|Protein 0.85-~1.00 1.1E-09~1.5E-221
TMTC2 Final_score|Fore_udder_att|Front_teat_pla| 0.95~1.00 1.2E-09~4.9E-26
Rear_teat_pla|Rear_ud_height|Teat_length
ARRDC3 Dtr_Calv_Ease|Rear_ud_height|Sire_Calv_Ease 0.56-0.91 8.4E-09-2.7E-15
|Strength|Teat_length|Udder_depth
ABCC9 Dairy_form|Dtr_Preg_Rate|Fore_udder_att|Milk 0.999~1.00 4.4E-07-2.6E-21
|Protein|Udder_depth
DGATI Milk|Net_Merit|Pro_Percent|Protein|SCS 0.99~1.00 1.5E-21~2.0E-260
VPS13B Fat_Percent|Milk|Pro_Percent|Rear_ud_height|Udder_cleft 0.97-1.00 1.5E-07-1.5E-76
ZNF613 Body_depth|Net_Merit|Sire_Still_Birth|Stature|Strength 0.61-0.84 2.2E-14~8.9E-37
CCND2 Body_depth|Rump_width|Stature|Strength 0.71-1.00 2.4E-19~4.5E-26
MGSTI1 Fat|Fat_Percent|Milk|Pro_Percent 0.999~1.00 7.1E-21~2.4E-75
FGF6 Body_depth|Rump_width|Stature|Strength 0.76-1.00 1.1E-07~3.9E-21
CCDhcssc DFB_PTA|Dairy_form|Rear_ud_height 0.89~1.00 2.7E-10~2.9E-22
LOC751788 Dairy_form|Final_score 0.92/0.96 4.2E-09[1.4E-1
SCD Fat|Fat_Percent 1.00]1.00 9.7E-13|4.6E-10
MKLT Milk|Protein 1.00[1.00 2.0E-14|2.9E-10
SYT8 Final_score|Foot_angle 1.00/0.998 1.6E-10|1.4E-09
LOC782261 Milk|Net_Merit 0.92]0.61 6.5E-09]3.8E-10
CHEK2 Dtr_Calv_Ease|Sire_Calv_Ease 0.65/0.67 1.9E-12|3.8E-07
C8H%orf3 Final_score|Rump_width 1.00]0.63 1.2E-09|3.5E-09
GC Cow_Conc_Rate|Udder_depth 1.00/0.69 8.5E-08|1.8E-09
KALRN Cow_Conc_Rate|Dtr_Preg_Rate 0.54/0.92 1.4E-07|2.8E-08
CSN1s1 Pro_Percent|Protein 0.999]1.00 1.2E-14]8.7E-14
SCAPER Fore_udder_att|Front_teat_pla 0.999|0.77 5.3E-08]3.3E-08
TCP11 Stature|Udder_depth 1.00]0.97 5.9E-15|3.1E-08
PAEP Fat_Percent|Protein 0.996|0.84 2.0E-111.1E-07
ANKFNT Rump_width|SCS 0.98/0.87 1.5E-09|3.8E-07
NADSYN1 Dtr_Preg_Rate|Stature 0.65|0.99 2.9E-08|3.3E-07
LOC100852273 Final_score|Fore_udder_att 0.995/0.97 3.2E-09]8.4E-09
RABGA Milk|Pro_Percent 0.79]0.72 2.1E-13|3.5E-13
LOC107132925 Fore_udder_att|Udder_depth 0.75/0.999 1.6E-15|9.7E-18
POLD1 Foot_angle|Protein 0.98]0.99 3.8E-12|4.7E-13
RABTIFIP2 Front_teat_pla|Rear_teat_pla 0.83|0.64 2.5E-10[1.5E-07
MGMT Rump_angle 1 4.15E-1
BOSTAUVIR417 Sire_Still_Birth 1 1.64E-16
SLC50A1 Pro_Percent 1 2.48E-1
RNF217 Pro_Percent 1 2.29E-09
LOC104974054 Rump_angle 1 3.19E-15
HSD17B12 Fat_Percent 1 9.24E-10
LOC104975270 Fore_udder_att 1 3.69E-1
LOC104972568 Sire_Calv_Ease 1 4.13E-10
ADGRV1 Sire_Calv_Ease 1 4.93E-10
CD276 Dtr_Preg_Rate 1 3.86E-11
TTC28 Dtr_Calv_Ease 1 4.98E-10
LSP1 Udder_depth 1 2.95E-12
VEPH1 Udder_cleft 0.999 3.49E-07
TIGAR Prod_Life 0.999 9.64E-17
CCDC57 Fat 0.999 2.12E-09
GONA4L Protein 0.998 1.45E-10
FASN Fat_Percent 0.998 7.47E-10
COLEC12 Rump_angle 0.997 1.05E-08
ceé SCS 0.997 3.95E-08
MYH10 Udder_depth 0.996 1.71E-09
GPAT4 Fat_Percent 0.995 3.93E-11
EXOC6B Teat_length 0.992 1.09E-09
ABO Pro_Percent 0.988 4.37E-1
LOC619012 Sire_Still_Birth 0.988 5.09E-09
MRGPRG Sire_Calv_Ease 0.987 3.63E-07
FSTL1 Stature 0.985 2.13E-08
SFTPD Pro_Percent 0.985 3.92E-10
SLC24A2 Rump_angle 0.973 5.17E-09
ESR1 Dtr_Calv_Ease 0.971 2.29E-1
LDLR SCS 0.965 2.85E-08
TBCID22A Pro_Percent 0.947 3.73E-14
PTCH1 Body_depth 0.941 7.46E-09
LOC101903327 Prod_Life 0.936 9.30E-06
FAM98B Stature 0.93 5.08E-08
VWA2 Teat_length 0.929 7.82E-06
LOC786966 Pro_Percent 0.919 1.33E-08
MROH9 Rear_teat_pla 0.908 1.27E-08

including the DGATI gene. Minor inflations were observed in
GWAS for calving traits (i.e., calving ease and stillbirth) and final
score (Supplementary Fig. 1). Although there were many sporadic
variants passing the threshold of genome-wide significance (P <
5E—8), we could still locate a few credible GWAS peaks where
there were a cluster of significant varijants.

Initially, our fine-mapping discovered as many as 19 signals in
a candidate region for a trait, as we applied a variant inclusion
threshold accounting for only the effective number of indepen-
dent variants (m.g) at the locus-by-trait level. We also noticed
that there were more locus-by-trait association pairs with mul-
tiple signals than with only one signal. By examining those with
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Table 3 Missense variants with largest posterior probabilities of causality (>0.2)

Variant Gene MAF Average PPC Traits

7:93244933 ARRDC3 0.099 0.608 Body_depth|Dtr_Calv_Ease|Net_Merit
|Prod_Life|Rear_ud_height|Sire_Calv_Ease
|Strength|Teat_length|Udder_depth

6:38027010 ABCG2 0.015 0.87 Fat|Fat_Percent|Milk|Net_Merit
|Pro_Percent|Protein

8:83581466 PTCH1 0.027 0.678 Body_depth|Strength

26:21144708 SCD 0.253 0.571 Fat|Fat_Percent

1.:69673871 KALRN 0.105 0.462 Cow_Conc_Rate|Dtr_Preg_Rate

19:7521843 ANKFN1 0.217 0.446 Rump_width|SCS

29:50290087 SYT8 0.388 0.438 Final_score|Foot_angle

29:50286107 TNNI2 0.203 0.436 Rump_width|Stature

29:50289940 SYT8 0.387 0.399 Final_score|Foot_angle

17:70276788 CHEK2 0.088 0.388 Dtr_Calv_Ease|Sire_Calv_Ease

18:57017616 POLD1 0.103 0.291 Foot_angle|Protein

8:83044210 FANCC 0.116 0.252 Rear_teat_plajUdder_depth

14:1321450 LOC782261 0.207 0.206 Milk|Net_Merit

14:2072259 LOC786966 0.090 0.919 Pro_Percent

18:44378414 CHST8 0.120 0.889 DFB_PTA

5:118244695 TBCID22A 0.177 0.676 Pro_Percent

5:30259026 NCKAPSL 0.252 0.611 Teat_length

315464749 GBA 0.063 0.601 Milk

3:20189903 ADAMTSL4 0.075 0.571 Dairy_form

11104232298 ABO 0.309 0.449 Pro_Percent

19:51319797 CCDC57 0.350 0.423 Fat

18:61020273 ZNF331 0.038 0.322 Dairy_form

19:51319759 CCDC57 0.350 0.304 Fat

8:85147150 LOC101906801 0117 0.302 Strength

13:58716308 C13H200rf85 0.116 0.297 Fore_udder_att

11104232319 ABO 0.309 0.223 Pro_Percent

14:66328304 SPAGT 0.119 0.222 SCS

multiple signals, we found the models often contained a strong
signal and several much weaker ones. Those weak signals might
result from imperfect model fitting of the lead variants in other
signals, instead of being true positives. Nevertheless, filtering out
these weak signals with genome-wide significance levels did little
harm to the discovery of strong ones.

The enrichment results for SnpEff-inferred variant impact in
our study were very different from those reported in human
studies?’. The differences among the four categories in the human
study are more distinctive than ours. This is consistent with our
anticipation that high LD in cattle genome makes such enrich-
ment difficult to detect. In addition, high-impact variants gen-
erally have a lower frequency than other varijants and are thus
harder to impute in cattle where the number of reference
sequences is small and the original genotype data are of moderate
density. Nevertheless, we found a considerable enrichment of
candidate causal effects in moderate-impact variants. Incorpora-
tion of this enrichment into fine-mapping facilitated the dis-
covery of more candidate causal variants (Fig. 5). The discovery
of biologically meaningful enrichment patterns will be valuable
for the development of new methods to incorporate functional
information into fine-mapping and genomic prediction.

Different functional annotations are often related, so we ana-
lyzed the enrichment of each functional annotation separately.
Although single-annotation analysis does not resolve confound-
ing of multiple annotations, the enrichment estimates can still
provide 